## A Brief History of Computer Science

David Greenstein Monta Vista High School, Cupertino, CA

# History of Computing Machines

# The Word "Computer"

- The word "computer" was first used in 1613 meaning any person performing calculations.
- The calculations of this period required years of training in mathematics and was expensive to perform (i.e. labor-intensive).



"Hidden Figures" movie

### Modern Definition of "Computer"

- A programmable machine
- A machine that manipulates data according to a list of instructions
- Any device which aids humans in performing various kinds of computations or calculations



**Analytic Engine** 



Monroe



Wang 2200

# **Computing Devices**

- Abacus (2400 BCE) performed basic arithmetic operations
- Slide Rule (1622) performed multiplication & division, logarithms, and trigonometry
- Arithmometer (1820) first reliable and commercially successful mechanical calculating machine







### Charles Babbage (1791-1871)

- Designed and built a Difference Engine (1822) to tabulate polynomial functions.
  It was the first mechanical computer.
- Proposed the Analytical Engine (1837). The design is recognized as the first general-purpose computer. Babbage never built it.
- Augusta Ada Byron assisted Babbage and wrote programs for the Analytical Engine. She is recognized for being the first "programmer".







**Difference Engine** 

# Von Neumann Architecture

- A computer architecture proposed by physicist and mathematician John von Neumann in 1945.
- Previous computers were hard-wired with one program to solve one problem. Von Neumann's computer could load and execute different programs to solve different problems.
- It is the basic computer architecture still used today.



## **The First Modern Computers**

Harvard Mark I (1943)

 the first electromechanical computer **ENIAC** 





# **Computer Generations**

- First Generation (1946-1958) vacuum tubes and magnetic drums for memory, low level machine language
- Second Generation

(1959-1964) - small transistors replaced vacuum tubes, faster and cheaper, energy-efficient and more reliable

 Third Generation (1965-1970) one integrated circuit replaced hundreds of transistors, again smaller, cheaper, faster







## **Computer Generations (cont.)**

- Fourth Generation (1971-today) the microprocessor
  - the microprocessor fit thousands of integrated circuits into a small package
  - small microprocessor-based computers could be built and linked together to form networks
  - computing power increased and saw the development of GUIs, the mouse, and handheld devices



## **Computer Generations (cont.)**

- Fifth Generation (today)
  - based on Artificial Intelligence (AI)
  - use parallel processing and superconductors
  - responds to natural language and capable of learning and organizing

IBM's Blue Gene/P massively parallel supercomputer

#### iPhone X





### History of Algorithms and Theoretical Computer Science

# **History of Algorithms**

- Algorithms were derived from algebra developed in the 7th century by Indian mathematician Brahmagupta
- In 825, a Persian mathematician, Al-Kwarizmi, wrote a book that spawned Hindu-Arabic numerals and algorithms into Europe
- In the 12th century, the book was translated to Latin and introduced a more formal concept of an algorithm
- Today, programs are the manifestation of algorithms in machine language



A GUIDE TO THE MEDICAL DIAGNOSTIC AND TREATMENT

# **Binary Logic**

- The **binary system** (0's & 1's) was invented in the 3rd century by the Indian mathematician Pingala.
- **Binary logic** was formally developed in the 1700's by Gottfried Leibniz (who invented Calculus with Newton). Here zeros and ones take on false and true values.
- George Boole refined the process in the 1800's and published
  Boolean Algebra.

### **Formal Boolean Algebra**

| in traditional mathematical structures concerns                                  |
|----------------------------------------------------------------------------------|
| in traditional mathematical structures concerns                                  |
|                                                                                  |
|                                                                                  |
| (a) IF D V A / O 1 is a Dealasm almohum define                                   |
| (a) II $D, \forall, \land, \uparrow, \downarrow, I$ is a boolean algebra, define |
|                                                                                  |
| $x + y \text{ as } (x \wedge y') \lor (x' \wedge y)$ (the symmetry)              |
|                                                                                  |
| $x \times y$ as $x \wedge y$ .                                                   |
|                                                                                  |
| Show that $B \perp \vee 0$ lies Boolean ring (i                                  |
| onow that $D, \pm, \times, 0, T$ is a Doolean ring (i.                           |
|                                                                                  |
| (b) If $R, +, \times, 0, 1$ is a Boolean ring, define                            |



# Alan Turing (1912-1954)



- A British theoretical mathematician who is recognized as the "Father of Computer Science".
- Developed the conceptual "Turing Machine", a basic abstract symbol manipulating device used to simulate the logic of any computer that could be constructed.



**Bombe Computer** 

During WWII, Turing developed an algorithm that broke the German's secret Enigma cipher. The "Bombe" computer was built specifically to perform Turing's algorithm.

## Now What?

## Since Turing, modern Computer Science has expanded into theoretical and applied sciences

#### **Theoretical Computer Science**

- Theory of Computation
- Information and Coding Theory
- Algorithms and Data Structures\*

#### **Applied Computer Science**

- Artificial Intelligence
- Computer Architecture and Engineering
- Computer Performance\*
- Computer Graphics\*
- Computer Cryptology
- Computer Networks
- Databases\*
- Software Engineering\*

### \* topics in APCS A

## And What About Programming?

- Programming is how we realize the theoretical and abstract algorithms, designs and architectures into practical, real-world terms.
- Programming languages are tools to express this realization.
- Different applications require different languages.